Assessing the role of AI in advancing construction sector industrial symbiosis research: a comparative study of leading digital assistants
Olcay Genc ()
Additional contact information
Olcay Genc: Bursa Uludag University
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2025, vol. 27, issue 10, No 14, 23615-23638
Abstract:
Abstract The integration of Artificial Intelligence (AI) in the construction sector has opened new avenues for advancing Industrial Symbiosis (IS) research. However, existing literature lacks a comprehensive comparison of how leading AI digital assistants contribute to this field. This study addresses this gap by examining the performance of four prominent AI models, Gemini, CoPilot, ChatGPT-Classic, and ChatGPT-Advanced in generating responses related to IS opportunities in construction industry. The methodology involves a two-stage analysis: first, questions related to IS concepts and practices are posed to each AI model to test their response reproducibility, measured using BLEU, METEOR, and Cosine Similarity scores. This is followed by human expert evaluations to validate the quality of the responses. In the second stage, the models are tasked with defining the European Waste Catalogue (EWC) codes and Statistical Classification of Economic Activities in the European Community (NACE) sector classifications associated with the selected waste materials, followed by identifying potential IS opportunities. Key findings reveal significant variability in the models’ capabilities. ChatGPT models consistently demonstrate higher semantic alignment with expert evaluations in both the general questions and IS opportunity identification. In contrast, CoPilot shows strengths in syntactic accuracy but sometimes lacks depth in contextual understanding. The study also identifies that while some AI models are adept at defining waste codes and sector classifications, their ability to identify practical IS opportunities varies. These insights underscore the need for an integrated approach, combining AI-generated data with human expertise, to fully exploit IS potential in construction. This study not only sheds light on the current state of AI in IS identification but also provides a framework for evaluating AI models in similar contexts. Future studies should focus on enhancing AI models’ contextual understanding and broadening their applications to promote sustainable industrial practices across various sectors.
Keywords: Artificial intelligence; Industrial symbiosis; ChatGPT; Circular economy; Construction industry; Natural language processing models; Sustainable industrial practices (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-024-05794-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:27:y:2025:i:10:d:10.1007_s10668-024-05794-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-024-05794-w
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().