An overview on remediation technologies for polycyclic aromatic hydrocarbons in contaminated lands: a critical approach
S. K. Singh () and
R. K. Singh
Additional contact information
S. K. Singh: CSIR-CIMFR
R. K. Singh: CSIR-CIMFR
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2025, vol. 27, issue 2, No 2, 2753-2787
Abstract:
Abstract Polycyclic aromatic hydrocarbons (PAHs) are bonded organic compounds with numerous structures with different toxicity levels. They can be of low molecular weight with 2–3 rings or high molecular weight with more than four rings and are persistent in nature. They possess high molecular weight and boiling point, hydrophobic with minimal solubility in water, and lipophilic with high solubility in organic solvents. With the gain in molecular weight, their susceptibility to oxidation–reduction decreases. They are generated during incomplete combustion of organic materials. They can be natural, such as forest fires, or artificial agents, such as coal, oil, wood burning, smoke, and auto-emissions. Due to strong molecular bonds and structural complexity, PAHs are highly malignant under normal conditions. They cause environmental damage due to improper handling and disposal in the surrounding air, water, soil, etc. PAH contamination is highly toxic because of mutagenic and potentially immune toxicants, often resulting in higher workplace casualties. Various physical, biological, and chemical processes remediate the PAHs in contaminated land. Indigenous microbial communities can effectively degrade it in-situ or ex-situ conditions. The degradation process depends on the type of microorganism, its life cycle, PAH substrate, pH, temperature, pressure, and the reaction mechanism. The present article discusses current literature, chemistry, natural and anthropogenic sources of generation, impacts on the environment, biota, etc., merits of physical, biological, and chemical remediation mechanisms with emphasis on microbial degradation, and novel options of technology intermix suitable for sustainable remediation outcomes.
Keywords: Environment; High molecular weight; Aromatic; Organic; Combustion; Petroleum; Carcinogenic (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-023-04020-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:27:y:2025:i:2:d:10.1007_s10668-023-04020-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-023-04020-3
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().