Dynamical phase transition in two-dimensional fully frustrated Josephson junction arrays with resistively shunted junction dynamics
M.-B. Luo () and
Q.-H. Chen
The European Physical Journal B: Condensed Matter and Complex Systems, 2003, vol. 35, issue 2, 201-207
Abstract:
The dynamical phase transitions in two-dimensional fully frustrated Josephson junction arrays at zero temperature are investigated numerically with the resistively shunted junction model through the fluctuating twist boundary condition. The model is subjected to a driving current with nonzero orthogonal components i x , i y parallel to both axes of the square lattice. We find a roughly lattice size independent phase diagram with three dynamical phases: a pinned vortex lattice phase, a moving vortex lattice phase and a moving plastic phase. The phase diagram shows a direct transition from the pinned vortex to the moving vortex phase and the separation of the pinned vortex and the moving plastic phases. The time-dependent voltages v x and v y are periodic in the moving vortex lattice phase. But they are aperiodic in the moving plastic phase, resulting in non-monotonic characteristics and hysteresis in the current-voltage curves. It is found that the characteristic frequency is twice the time-averaged voltage in the moving vortex phase and around the time-averaged voltage in the plastic flow regime. Copyright Springer-Verlag Berlin/Heidelberg 2003
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2003-00269-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:35:y:2003:i:2:p:201-207
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2003-00269-1
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().