EconPapers    
Economics at your fingertips  
 

Electronic structures and bonding of oxygen on plutonium layers

M. Huda and A. Ray ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2004, vol. 40, issue 3, 337-346

Abstract: Oxygen adsorptions on $\delta $ -Pu (100) and (111) surfaces have been studied at both non-spin-polarized and spin-polarized levels using the generalized gradient approximation of density functional theory (GGA-DFT) with Perdew and Wang (PW) functionals. The center position of the (100) surface is found to be the most favorable site with chemisorption energies of 7.386 eV and 7.080 eV at the two levels of theory. The distances of the oxygen adatom from the Pu surface are found to be 0.92 Å and 1.02 Å, respectively. For the (111) surface non-spin-polarized calculations, the center position is also the preferred site with a chemisorption energy of 7.070 eV and the distance of the adatom being 1.31 Å, but for spin-polarized calculations the bridge and the center sites are found to be basically degenerate, the difference in chemisorption energies being only 0.021 eV. In general, due to the adsorption of oxygen, plutonium 5f orbitals are pushed further below the Fermi energy, compared to the bare plutonium layers. The work function, in general, increases due to oxygen adsorption on plutonium surfaces. Copyright Springer-Verlag Berlin/Heidelberg 2004

Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2004-00281-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:40:y:2004:i:3:p:337-346

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2004-00281-y

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:40:y:2004:i:3:p:337-346