EconPapers    
Economics at your fingertips  
 

Zero field Wigner crystal

R. Chitra () and T. Giamarchi ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 44, issue 4, 455-467

Abstract: A candidate for the insulating phase of the 2D electron gas, seen in high mobility 2D MOSFETS and heterojunctions, is a Wigner crystal pinned by the incipient disorder. With this in view, we study the effect of collective pinning on the physical properties of the crystal formed in zero external magnetic field. We use an elastic theory to describe to long wavelength modes of the crystal. The disorder is treated using the standard Gaussian variational method. We calculate various physical properties of the system with particular emphasis on their density dependence. We revisit the problem of compressibility in this system and present results for the compressibility obtained via effective capacitance measurements in experiments using bilayers. We present results for the dynamical conductivity, surface acoustic wave anomalies and the power radiated by the crystal through phonon emission at finite temperatures. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00145-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:44:y:2005:i:4:p:455-467

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2005-00145-0

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:44:y:2005:i:4:p:455-467