EconPapers    
Economics at your fingertips  
 

Exchange bias studies of NiFe/FeMn/NiFe trilayer by ion beam etching

V. K. Sankaranarayanan, D. Y. Kim, S. M. Yoon, C. O. Kim and C. G. Kim ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 45, issue 2, 203-206

Abstract: Effect of low energy ion beam etching on exchange bias in NiFe/FeMn/NiFe trilayer is investigated in multilayers prepared by rf magnetron sputtering. Stepwise etching and magnetization measurement of FeMn layer in an NiFe/FeMn bilayer show increase of bias as etching proceeds and FeMn thickness decreases. The bias show a maximum around 7 nm FeMn thickness and then fall sharply below 5 nm, broadly in line with the exchange bias variation at increasing FeMn thickness but in reverse order, particularly at low FeMn thickness. Progressive etching of top NiFe layer in the NiFe/FeMn/NiFe trilayer shows an initial gradual increase in bias followed by a sharp increase below 7 nm thickness of top NiFe layer, with a maximum at 2 nm thickness for both NiFe layers and greater bias for seed NiFe layer. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00055-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:45:y:2005:i:2:p:203-206

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2005-00055-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:45:y:2005:i:2:p:203-206