Quantum dynamics of the dissociation of H 2 on Rh(111)
A. Dianat,
S. Sakong and
A. Gross ()
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 45, issue 3, 425-432
Abstract:
The dissociative adsorption of H 2 on Rh(111) has been studied by high-dimensional quantum calculations using a coupled channel scheme. The potential energy surface was derived from ab initio total energy calculations using density functional theory together with the generalized gradient approximation to describe exchange-correlation effects. Experimentally, at high kinetic energy a step in the dissociative adsorption probability as a function of kinetic energy has been observed [M. Beutl et al., Surf. Sci. 429, 71 (1999)] which has been attributed to the opening up of a new adsorption channel. This feature in the dissociation probability is reproduced in the calculations for H 2 molecules initially in the ro-vibrational ground state but it is not related to the opening up of an additional dissociation channel. Instead, it is caused by purely dynamical effects. In addition, rotational effects in the H 2 dissociation are addressed. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00197-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:45:y:2005:i:3:p:425-432
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00197-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().