Electronic properties of intersubband transition in (CdS/ZnSe)/BeTe quantum wells
S. Abdi-Ben Nasrallah (),
N. Sfina and
M. Said
The European Physical Journal B: Condensed Matter and Complex Systems, 2005, vol. 47, issue 2, 167-170
Abstract:
In view of the fact that the bandwidth required in optical fiber communication systems will exceed 100 Gb s -1 , ultrafast optical switching and modulation devices with high efficiency must be developed. Given that intersubband transitions (ISBT) in quantum wells (QWs) are one of the important ultrafast phenomena, a numerical study of intersubband transition (ISBT) properties in (CdS/ZnSe)/BeTe QWs is considered. The structure modeled consists of a few monolayers of CdS embedded in a ZnSe/BeTe QW. A self-consistent analysis is made to achieve the desired properties and device applications. Variation of CdS well thickness leads to tailoring of the band alignment, achieving optical transitions in the wavelength range of 1.33–1.55 μm wavelengths for applications in optical fiber transmission. To analyze the optical behavior of the heterostructure under investigation, we have calculated the CdS well thickness-dependant oscillator strengths and electron emission energy of the intersubband transition between the two first states in the well. An attempt to explain our results will be presented. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2005-00323-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:47:y:2005:i:2:p:167-170
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2005-00323-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().