Quantum chemical study of Co 3+ spin states in LaCoO 3
L. Siurakshina (),
B. Paulus,
V. Yushankhai and
E. Sivachenko
The European Physical Journal B: Condensed Matter and Complex Systems, 2010, vol. 74, issue 1, 53-61
Abstract:
Ab initio quantum-chemical cluster calculations are performed for the perovskite LaCoO 3 . The main concern is to calculate the energy level ordering of different spin states of Co 3+ , which is an issue of great controversy for many years. The calculations performed for the trigonal lattice structure at T=5 K and 300 K, with the structural data taken from experiment, display that the low-spin (LS, S=0) ground state is separated from the first excited high-spin (HS, S=2) state by a gap >100 meV, while the intermediate-spin (IS, S=1) state is located at much higher energy ≈0.5 eV. We suggest that the local lattice relaxation around the Co 3+ ion excited to the HS state and the spin-orbit coupling reduce the spin gap to a value ~10 meV. Coupling of the IS state to the Jahn-Teller local lattice distortion is found to be rather strong and reduces its energy position to a value of 200 $\div$ 300 meV. Details of the quantum-chemical cluster calculation procedure and the obtained results are extensively discussed and compared with those reported earlier by other authors. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2010-00063-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:74:y:2010:i:1:p:53-61
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2010-00063-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().