Structure and stability of annular sheared channel flows: effects of confinement, curvature and inertial forces – waves
E. Plaut (),
Y. Lebranchu,
M. Jenny and
É. Serre
The European Physical Journal B: Condensed Matter and Complex Systems, 2011, vol. 79, issue 1, 35-46
Abstract:
The structure and stability of the flows in an annular channel sheared by a rotating lid are investigated experimentally, theoretically and numerically. The channel has a square section, and a small curvature parameter: the ratio Γ of the inter-radii to the mean radius is 9.5%. The sidewalls and the bottom of the channel are integral and can rotate independently of the lid, permitting pure shear, co-rotation and counter-rotation cases. The basic flows obtained at small shear are characterized. In the absence of co-rotation, the centrifugal force linked with the curvature of the system plays an important role, whereas, when co-rotation is fast, the Coriolis force dominates. These basic flows undergo some instabilities when the shear is increased. These instabilities lead to supercritical traveling waves in the pure shear and co-rotation cases, but to weak turbulence in the counter-rotation case. The Reynolds number for the onset of instabilities, constructed with the velocity difference between the lid and bottom at mid-radius, and the height of the channel, increases from 1000 in the counter-rotation case to 1260 in the pure shear case and higher and higher values when co-rotation increases, i.e., when the Coriolis effect increases. The relevance of uni-dimensional Ginzburg-Landau models to describe the dynamics of the waves is studied. The domain of validity of these models turns out to be quite narrow. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2010-10572-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:79:y:2011:i:1:p:35-46
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2010-10572-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().