Effect of aspect ratio on the inter-surface plasmonic coupling of tubular gold nanoparticle
J. Zhu () and
F.-K. Li
The European Physical Journal B: Condensed Matter and Complex Systems, 2011, vol. 80, issue 1, 83-87
Abstract:
A theoretical study based on discrete dipole approximation (DDA) and coupling effect is presented on the tunable transverse surface plasmon resonance (SPR) in a gold nanotube with varying aspect ratio (AR). Because gold nanotube has the shape features from both rod and shell, both the AR and wall thickness can greatly affect the transverse SPR. It is observed that the maximum red shift can be obtained with small wall thickness and AR. By calculating the local field distribution, the physical mechanism of this multi shape factors controlled plasmon shifting has been illustrated by the coulombic interaction from the charges at the interfaces of gold nanotube. This study indicates that finding the surface charge distribution by calculating the local electric field can be used as an effective method to analyze the plasmonic characters in complicated metallic nanostructure. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2011-10942-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:80:y:2011:i:1:p:83-87
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2011-10942-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().