EconPapers    
Economics at your fingertips  
 

Effective swimming strategies in low Reynolds number flows

P. Olla ()

The European Physical Journal B: Condensed Matter and Complex Systems, 2011, vol. 80, issue 2, 263-273

Abstract: The optimal strategy for a microscopic swimmer to migrate across a linear shear flow is discussed. The two cases, in which the swimmer is located at large distance, and in the proximity of a solid wall, are taken into account. It is shown that migration can be achieved by means of a combination of sailing through the flow and swimming, where the swimming strokes are induced by the external flow without need of internal energy sources or external drives. The structural dynamics required for the swimmer to move in the desired direction is discussed and two simple models, based respectively on the presence of an elastic structure, and on an orientation dependent friction, to control the deformations induced by the external flow, are analyzed. In all cases, the deformation sequence is a generalization of the tank-treading motion regimes observed in vesicles in shear flows. Analytic expressions for the migration velocity as a function of the deformation pattern and amplitude are provided. The effects of thermal fluctuations on propulsion have been discussed and the possibility that noise be exploited to overcome the limitations imposed on the microswimmer by the scallop theorem have been discussed. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2011-10944-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:80:y:2011:i:2:p:263-273

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2011-10944-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:80:y:2011:i:2:p:263-273