The c-axis fluctuation conductivity in layered superconductors in a strong electric field under a magnetic field
Bui Duc Tinh ()
Additional contact information
Bui Duc Tinh: Institute of Research and Development, Duy Tan University
The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 6, 1-5
Abstract:
Abstract The effect of a high electric field on the c-axis fluctuation conductivity in layered superconductors near the superconducting transition is investigated by the time-dependent Ginzburg-Landau equation. The c-axis fluctuation conductivity is calculated in self-consistent Gaussian approximation for an arbitrarily strong electric field and a magnetic field perpendicular to the layers. Our results include all Landau levels and have refined analytical form. The results in linear response are in good agreement with the experimental data in a wide region around T c in high T c superconductor. We also show that high electric fields can be effectively used to suppress the c-axis fluctuation conductivity in high-temperature superconductors.
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-80053-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-80053-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2017-80053-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().