EconPapers    
Economics at your fingertips  
 

Investigation of optical, electrical and optoelectronic properties of SnSe crystals

Kunjal Patel (), Gunvant Solanki, Kireetkumar Patel, Vivek Pathak and Payal Chauhan
Additional contact information
Kunjal Patel: Sardar Patel University
Gunvant Solanki: Sardar Patel University
Kireetkumar Patel: Sardar Patel University
Vivek Pathak: Sardar Patel University
Payal Chauhan: Sardar Patel University

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 9, 1-11

Abstract: Abstract The optical, electrical and optoelectronic properties of tin selenide crystals are of immense significance for application in photodetectors and energy conversion and storage devices. The transition metal chalcogenides possess a layered structure that interacts with each other through van der Waal forces and can also offer sites for intercalation. The low molecular weight materials like GeSe and SnSe are found in an orthorhombic structure. In this article, the optical, electrical and optoelectronic properties of as-grown tin selenide crystals are investigated. The chemical composition of the crystals grown with the aid of direct vapour transport (DVT) technique is confirmed through energy Dispersive analysis of X-rays (EDAX), at the same time the morphological analysis is accomplished using optical microscopy and Scanning Electron Microscopy (SEM). The grown crystals are characterized by powder X-ray diffraction (XRD) method to assess the structural properties of the material. The XRD evaluation found out the orthorhombic structure of the crystals with the space group 2h16D (Pcmn) having lattice parameters a = 11.490 Å, b = 4.440 Å and c = 4.135 Å. The crystallinity of grown samples was verified by transmission electron microscopy (TEM). The single crystalline nature of grown crystals was revealed by SAED pattern. The indirect optical band gap of 1.0065 eV, Urbach energy and steepness parameter are calculated utilising UV–VIS-NIR spectrophotometer. The optical absorption of as-grown SnSe crystals has been measured close to the fundamental absorption edge at room temperature. Both types of transitions, i.e. direct and indirect, are involved in the absorption process. Electrical transport properties like resistivity measurements (parallel and perpendicular path to the c-axis) had been carried out on these crystals within the temperature range 297–673 K. Anisotropy in resistivity measurements in both the directions, i.e. parallel and perpendicular direction to the c-axis was discovered. The p-type semiconducting nature was confirmed with the aid of Hall-effect measurements. For the photodetection properties of SnSe crystals, light source (670 nm) having an intensity of 3 mW/cm2 at distinctive biasing voltages is used. The outstanding detection properties are revealed from the responsivity, specific detectivity and external quantum efficiency (EQE) of pure SnSe crystals. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100306-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100306-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-100306-8

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100306-8