Interaction of hydrogen impurities with intrinsic point defects at the CuInSe $$_2$$ 2 /CdS interface of chalcopyrite-based solar cells
A. G. Marinopoulos ()
Additional contact information
A. G. Marinopoulos: University of Coimbra
The European Physical Journal B: Condensed Matter and Complex Systems, 2022, vol. 95, issue 1, 1-9
Abstract:
Abstract The presence of hydrogen in solar cells based on chalcopyrite CuInSe $$_2$$ 2 (CIS) absorbers has been linked with improvements in structural properties and cell performance but also with detrimental reliability issues. A major concern is to understand how hydrogen interacts with the absorber-buffer CIS/CdS heterojunction which is the main building block of a typical thin-film solar cell, with CdS most commonly used as the buffer layer. The present study reports calculations based on density-functional theory that examine the segregation propensity of single hydrogen impurities at the interfacial region of the CIS/CdS heterojunction. Two distinct interface variants of the heterojunction were constructed by joining the polar {112} crystalline planes of the absorber (CIS) and buffer (CdS) lattices. Ordered point defects comprising copper vacancies and cation antisites were created to stabilize the {112} facets. The calculations provide detailed information on the type of configurations that hydrogen impurities can form locally at the CIS/CdS interfaces and their defect association with the stabilizing point defects. Essential aspects of the local electronic structure such as the electron spatial localization and the position of the defect-induced levels were also determined. Graphical abstract
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-021-00255-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:95:y:2022:i:1:d:10.1140_epjb_s10051-021-00255-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/s10051-021-00255-z
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().