EconPapers    
Economics at your fingertips  
 

Persistence of chimera states and the challenge for synchronization in real-world networks

Riccardo Muolo, Joseph D. O’Brien, Timoteo Carletti and Malbor Asllani ()
Additional contact information
Riccardo Muolo: University of Namur
Joseph D. O’Brien: University of Limerick
Timoteo Carletti: University of Namur
Malbor Asllani: Florida State University

The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 1, 1-16

Abstract: Abstract The emergence of order in nature manifests in different phenomena, with synchronization being one of the most representative examples. Understanding the role played by the interactions between the constituting parts of a complex system in synchronization has become a pivotal research question bridging network science and dynamical systems. Particular attention has been paid to the emergence of chimera states, where subsets of synchronized oscillations coexist with asynchronous ones. Such coexistence of coherence and incoherence is a perfect example where order and disorder can persist in a long-lasting regime. Although considerable progress has been made in recent years to understand such coherent and (coexisting) incoherent states, how they manifest in real-world networks remains to be addressed. Based on a pattern formation mechanism, in this paper, we shed light on the role that non-normality, a ubiquitous structural property of real networks, has in the emergence of several diverse dynamical phenomena, e.g., amplitude chimeras or oscillon patterns. Specifically, we demonstrate that the prevalence of source or leader nodes in networks leads to the manifestation of phase chimera states. Throughout the paper, we emphasize that non-normality poses ongoing challenges to global synchronization and is instrumental in the emergence of chimera states. Graphic abstract

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-023-00630-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:1:d:10.1140_epjb_s10051-023-00630-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-023-00630-y

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:97:y:2024:i:1:d:10.1140_epjb_s10051-023-00630-y