EconPapers    
Economics at your fingertips  
 

Adsorption of formamide on pure, Al-, N-doped, and Al/N co-doped (8, 0) single-wall carbon nanotubes: a DFT study

Marjan Ghafari, Hossein Mohammadi-Manesh () and Forough Kalantari Fotooh
Additional contact information
Marjan Ghafari: Yazd University
Hossein Mohammadi-Manesh: Yazd University
Forough Kalantari Fotooh: Islamic Azad University

The European Physical Journal B: Condensed Matter and Complex Systems, 2024, vol. 97, issue 4, 1-13

Abstract: Abstract This study investigates the sensing capabilities of (8,0) SWCNTs in detecting formamide (HCONH2), a molecule crucial for the structure of proteins, nucleic acids, and certain anti-cancer drugs. Adsorption of HCONH2 on pristine SWCNT, Al- and N-doped SWCNT, and Al/N co-doped SWCNT was studied using dispersion-corrected density functional theory (DFT-D). Formamide was adsorbed from both oxygen and –NH2 sides, and the structures were fully optimization. The relaxed structures were applied for calculating magnetic and electronic properties like adsorption energies, band structures, and partial density of states. Most negative adsorption energy in doped structures indicates the strongest adsorption of formamide in doped structures than pristine SWCNT. The results also indicates that formamide adsorption does not change the electronic properties of pure SWCNT and N-doped SWCNT. However, it removes the band gaps of Al- and Al/N-doped SWCNT. Therefore, the modified nanotubes convert from semiconductor to metallic character which can be detected using electronic devices. Moreover, formamide adsorption induces some magnetization to Al-doped SWCNT and Al/N co-doped which can be utilized in spin transport devices. These findings suggest that Al/N co-doped and Al-doped SWCNTs are good candidates for detecting HCONH2 molecules. Graphical abstract

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00679-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:97:y:2024:i:4:d:10.1140_epjb_s10051-024-00679-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-024-00679-3

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:eurphb:v:97:y:2024:i:4:d:10.1140_epjb_s10051-024-00679-3