EconPapers    
Economics at your fingertips  
 

How oscillations in SIRS epidemic models are affected by the distribution of immunity times

Daniel Henrik Nevermann () and Claudius Gros ()
Additional contact information
Daniel Henrik Nevermann: Goethe University
Claudius Gros: Goethe University

The European Physical Journal B: Condensed Matter and Complex Systems, 2025, vol. 98, issue 2, 1-10

Abstract: Abstract Models for resident infectious diseases, like the SIRS model, may settle into an endemic state with constant numbers of susceptible (S), infected (I) and recovered (R) individuals, where recovered individuals attain a temporary immunity to reinfection. For many infectious pathogens, infection dynamics may also show periodic outbreaks corresponding to a limit cycle in phase space. One way to reproduce oscillations in SIRS models is to include a non-exponential dwell-time distribution in the recovered state. Here, we study a SIRS model with a step-function-like kernel for the immunity time, mapping out the model’s full phase diagram. Using the kernel series framework, we are able to identify the onset of periodic outbreaks when successively broadening the step-width. We further investigate the shape of the outbreaks, finding that broader steps cause more sinusoidal oscillations while more uniform immunity time distributions are related to sharper outbreaks occurring after extended periods of low infection activity. Our main results concern recovery distributions characterized by a single dominant timescale. We also consider recovery distributions with two timescales, which may be observed when two or more distinct recovery processes co-exist. Surprisingly, two qualitatively different limit cycles are found to be stable in this case, with only one of the two limit cycles emerging via a standard supercritical Hopf bifurcation.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-024-00858-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:98:y:2025:i:2:d:10.1140_epjb_s10051-024-00858-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-024-00858-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:eurphb:v:98:y:2025:i:2:d:10.1140_epjb_s10051-024-00858-2