EconPapers    
Economics at your fingertips  
 

Geometrical distribution of agents based on a generalised Potts model

Alejandro Rivero (), Alfonso Tarancón and Carlos Tarancón
Additional contact information
Alejandro Rivero: Universidad de Zaragoza
Alfonso Tarancón: Universidad de Zaragoza
Carlos Tarancón: Kampal Data Solutions

The European Physical Journal B: Condensed Matter and Complex Systems, 2025, vol. 98, issue 9, 1-8

Abstract: Abstract In collective local interaction systems with agents assigned to different profiles (categories, traits), the distribution of such profiles in the neighbourhood of any agent affects the exchange of ideas, a basic element in Collective Intelligence experiments. It is important to control this distribution experimentally, asking for criteria that should range from maximum homogeneity to maximum difference. We suggest a method where we obtain these criteria by adding an extra interaction term to the Q-state Potts model, producing a rich vacuum structure. By controlling the two parameters of the model, we can obtain different patterns for the geometrical distribution of the agents. We study the transitions and phase diagram of this model, considering the physics at constant magnetization, and show that the states correspond to a large diversity of mixing patterns, directly applicable to agent distribution in CI experiments. Graphical abstract

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/s10051-025-01005-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:98:y:2025:i:9:d:10.1140_epjb_s10051-025-01005-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/s10051-025-01005-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-09-08
Handle: RePEc:spr:eurphb:v:98:y:2025:i:9:d:10.1140_epjb_s10051-025-01005-1