Application of human motion recognition utilizing deep learning and smart wearable device in sports
Xiaojun Zhang ()
Additional contact information
Xiaojun Zhang: Xi’an Polytechnic University
International Journal of System Assurance Engineering and Management, 2021, vol. 12, issue 4, No 21, 835-843
Abstract:
Abstract The convolutional neural network (CNN) is analyzed in sports motion identification to study human motion recognition based on deep learning and smart wearable devices in sports. First, the convolution feature extraction algorithms are introduced, which include the one-dimensional (1D) convolution feature extraction algorithm, the two-dimensional (2D) convolution feature extraction algorithm, and the combination of the 1D convolution and recurrent neural network (RNN) algorithm. Then, the human motion behavior recognition is studied based on an RNN that includes simple RNN, long short-term memory network (LSTM), bilateral recurrent neural network (BLSTM), and gated recurrent unit (GRU). Finally, the 1D CNN + LSTM algorithm is chosen as the optimal algorithm through experimental analysis and comparison. Meanwhile, two kinds of sensors supported by smart wearable devices are chosen through the above methods, and a network model is constructed for human sports behavior recognition to process data collected through smart wearable devices. Smart wearable devices can operate under any circumstances. Due to low energy consumption and cost, they have been widely used in various sports events. The sensitivity and accuracy of the sensors in the smart wearable devices can be improved through the proposed 1D + LSTM algorithm, promoting their application in various sport events.
Keywords: Deep learning; Convolutional neural network; Smart wearable devices; Human motion (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01118-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:12:y:2021:i:4:d:10.1007_s13198-021-01118-7
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01118-7
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().