The analysis of tennis recognition model for human health based on computer vision and particle swarm optimization algorithm
Zhanguo Wang (),
Yuanbing Zhao () and
Cui Bian ()
Additional contact information
Zhanguo Wang: Luxun Academy of Fine Arts
Yuanbing Zhao: Luxun Academy of Fine Arts
Cui Bian: Luxun Academy of Fine Arts
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 3, No 26, 1228-1241
Abstract:
Abstract The study aims to solve the problem of tennis picking for players in the training process and realize intelligent tennis picking. An intelligent tennis picking robot is studied to recognize and position tennis balls. First, the tennis recognition algorithm based on HSV (hue, saturation, value) color space is used to identify the tennis ball, and the coordinates of tennis and obstacles are obtained by background difference and OF (optical flow). Second, particle swarm optimization (PSO) that has excellent global planning ability and support vector machine (SVM) that has good obstacle avoidance performance are applicable because there may be some obstacles in tennis courts. Therefore, the traditional PSO and SVM are combined to obtain the optimized PSO. And the simulation comparison experiment is carried out on the Matlab simulation software. Finally, the model is tested and 50 random screenshots of tennis videos collected on the spot, and tennis photos downloaded on the network are tested in the dataset. The results show that the number of tennis balls correctly identified by the proposed algorithm is 248 and that of tennis balls wrongly identified is 8. Its recognition accuracy is 96.88% and the time spent is 9.33 s. The algorithm proposed provides some ideas to solve the problem of tennis picking for tennis players.
Keywords: Particle swarm optimization; Support vector machine; Optical flow; Background difference (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01673-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-022-01673-7
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-022-01673-7
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().