Linear and non-linear bayesian regression methods for software fault prediction
Rohit Singh () and
Santosh Singh Rathore ()
Additional contact information
Rohit Singh: ABV-Indian Institute of Information Technology and management Gwalior
Santosh Singh Rathore: ABV-Indian Institute of Information Technology and management Gwalior
International Journal of System Assurance Engineering and Management, 2022, vol. 13, issue 4, No 25, 1864-1884
Abstract:
Abstract Faults are most likely to occur during the coding phase of software development. If, before the testing process, we can predict parts of code that are more prone to faults, then a large amount of time, software cost could be saved, and the software’s overall quality could be improved. Various researchers have previously attempted to predict software faults using numerous machine learning techniques in order to identify whether software modules are fault-prone or not. Ranking the software modules based on their fault content has rarely been explored before. Additionally, Bayesian methods have not been explored before for this task. We aim to investigate both linear and non-linear Bayesian regression methods for software fault prediction in this work. We develop and evaluate fault prediction models for two scenarios: intra-release prediction and cross-release prediction. The experimental investigation is conducted on 46 different software project versions. We use mean absolute error, and root means square error, and fault percentage average as performance measures. The results showed that Bayesian NLR outperformed linear regression and other used machine learning approaches or produced at least comparable performance. Bayesian linear regression method performed moderately.
Keywords: Machine learning techniques; Bayesian learning; Regression; Covariance matrix; Monte carlo markov chain (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01582-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01582-1
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01582-1
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().