On the applicability of search-based algorithms for software change prediction
Ruchika Malhotra () and
Megha Khanna ()
Additional contact information
Ruchika Malhotra: Delhi Technological University
Megha Khanna: Delhi Technological University
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 1, No 6, 55-73
Abstract:
Abstract Numerous research studies have claimed that search-based algorithms have the potential to be effectively used in various software engineering domains. An important task in software organizations is to efficiently recognize change prone classes of a software, as it is crucial to plan efficient resource utilization and to take precautionary design measures as early as possible in the software product lifecycle. This assures development of good quality software products at lower costs. The current study attempts to evaluate the capability of search-based algorithms while developing prediction models for identification of the change prone classes in a software. Though previous literature has evaluated the use of statistical category and machine learning category of algorithms in this domain, the suitability of search-based algorithms needs extensive investigation in this area. Furthermore, the study compares the performance of search-based classifiers with statistical and machine learning classifiers, by empirically validating the results on fourteen open source data sets. The results indicate comparable and in some cases even better performance of search based algorithms in comparison to other evaluated categories of algorithms.
Keywords: Change proneness; Search based algorithms; Software quality; Object-oriented software (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01099-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-021-01099-7
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01099-7
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().