EconPapers    
Economics at your fingertips  
 

Optimization of servo accuracy of Y axis of dicing saw based on iterative learning control

Jun Shi (), Peiyi Zhang (), Hechao Hou (), Weifeng Cao () and Lintao Zhou ()
Additional contact information
Jun Shi: Zhengzhou University of Light Industry
Peiyi Zhang: Zhengzhou University of Light Industry
Hechao Hou: Zhengzhou GL Tech Co., Ltd
Weifeng Cao: Zhengzhou University of Light Industry
Lintao Zhou: Zhengzhou University of Light Industry

International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 7, No 20, 3104-3116

Abstract: Abstract Dicing saw is a key equipment in chip packaging, in which the servo performance of each axis affects the scribing accuracy. Since the Y-axis is used to locate the micron-level cutting street, its servo positioning accuracy is required to be very high. In this paper, a variable forgetting factor fuzzy iterative learning control (VFF-FILC) with tracking differentiator is proposed for the high-precision localization of the Y-axis electromechanical servo system of the dual-axis wheel dicing saw model 8230 manufactured by Advanced Dicing Technologies. The method combines fuzzy control with iterative learning control to overcome the problem of poor anti-interference ability of traditional PID control. VFF-FILC reduces the overshoot and build-up time, and also improves the tracking performance by adaptively adjusting the learning rate of the ILC algorithm according to the tracking error of the system. To address the problem of noise interference with the Y-axis servo system, tracking differentiator is used to process the input position signal. In order to verify the superiority of the proposed design, it is compared with three conventional controllers in MATLAB/SIMULINK platform and anti-interference experiments are conducted. The results show that the VFF-FILC reduces the rise time by 28.57% and the overshoot by 88.23% compared to the PID controller, which proves the superiority of the proposed method in the Y-axis servo system of the wheel dicing saw.

Keywords: Dicing saw; Fuzzy control; Iterative learning control; Servo control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02318-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02318-7

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-024-02318-7

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02318-7