Robust design of damping controller for power system with snake optimization algorithm
Niharika Agrawal (),
Sheila Mahapatra () and
Faheem Ahmed Khan ()
Additional contact information
Niharika Agrawal: Ghousia College of Engineering
Sheila Mahapatra: Alliance University
Faheem Ahmed Khan: Ghousia College of Engineering
International Journal of System Assurance Engineering and Management, 2025, vol. 16, issue 3, No 19, 1256-1286
Abstract:
Abstract The stable, safe, and secure operation of the power system is essential for all-round development. Low-Frequency Oscillations (LFO) created in the power system due to disturbances influence the system’s security and integrity. LFOs restrict the system’s power transfer capacity and, if not controlled, will grow and cause the system to collapse. In this paper, Snake Optimization Algorithm (SOA)-based damping controllers have been developed for the stability improvement of the system. This SOA has been tested on the Congress on Evolutionary Computation benchmark functions and has the key benefits of exploration and exploitation. The four simulation models are the system with no controller, the system with a Power System Stabilizer(PSS), the Thyristor Controlled Series Capacitor (TCSC), and the Coordinated PSS and TCSC (CPT). The damping performance of the models is tested with a step input disturbance for three loading conditions. It is also tested with a solid three-phase fault to ground on one of the transmission lines. With the CPT model, the highest damping ratios (0.8110, 0.9840, and 0.9960) are obtained for all loading conditions. The settling time for variation in different parameters is less than 2.0 s in this model. The simulation results, eigenvalues, and damping ratio analysis are provided to demonstrate how well all of the models dampen LFOs. The proposed SOA shows a remarkable capability in designing a robust power system. The integrity, security, and expected lifetime of the power system are enhanced due to better damping performance with this excellent SOA-based CPT model.
Keywords: Damping ratio; Disturbance; Linearization; Oscillations; Power system; Robust; Stability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-025-02708-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:16:y:2025:i:3:d:10.1007_s13198-025-02708-5
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-025-02708-5
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().