A comparison of membership function shapes in a fuzzy-based fugacity model for disinfection byproducts in indoor swimming pools
Roberta Dyck (),
Rehan Sadiq,
Manuel Rodriguez,
Sabrina Simard and
Robert Tardif
Additional contact information
Roberta Dyck: University of British Columbia Okanagan
Rehan Sadiq: University of British Columbia Okanagan
Manuel Rodriguez: Université Laval
Sabrina Simard: Université Laval
Robert Tardif: Université de Montréal
International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 4, No 3, 2063 pages
Abstract:
Abstract Aleatory and epistemic uncertainty in human health risk assessment is virtually unavoidable. While probabilistic methods may adequately address exposure and risk model parameters with variability (body weight, exposure duration, exposure frequency), other methods are more helpful for handling uncertainty that arises from an incomplete understanding of the processes being modeled (mass transport). Due to the potential for cancer and other health risks, it is essential to understand of the concentrations of disinfection byproducts in swimming pool facilities and the related exposures. This study builds on previous probabilistic and fuzzy based fugacity models which estimate exposure to disinfection byproducts in swimming pools (Dyck, Water Res 45:5084–5098, 2011; Annual meeting of the North American Fuzzy Information Processing Society (NAFIPS), 2012). Those models estimated environmental concentrations based on mass transfer processes for which there are many possible formulas. The influence of membership function shape on the final estimated concentration required further investigation. In this study, three different trapezoidal membership functions are derived for the gas-side mass transfer coefficient k G . One triangular and one trapezoidal membership function are derived for the liquid-side mass transfer coefficient, k L . According to graphical output and percent difference between the actual concentration and the defuzzified output of the fuzzy based model, the best combination of shapes to use is the trapezoidal k G membership function which uses seven calculated values (to define the shape of the trapezoid) with either the triangular or trapezoidal k L membership function. Further study is recommended to combine the fuzzy based methods for poorly understood model processes with probabilistic methods for model parameters with aleatory uncertainty.
Keywords: Swimming pools; Disinfection byproducts (DBPs); Fugacity model; Fuzzy sets; Swimming pools; Membership functions (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-014-0318-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-014-0318-2
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-014-0318-2
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().