EconPapers    
Economics at your fingertips  
 

Lipschitz retractions on symmetric products of trees

Enrique Castañeda-Alvarado (), Fernando Orozco-Zitli () and Mónica A. Reyes-Quiroz ()
Additional contact information
Enrique Castañeda-Alvarado: Instituto Literario No. 100, Universidad Autónoma del Estado de México
Fernando Orozco-Zitli: Instituto Literario No. 100, Universidad Autónoma del Estado de México
Mónica A. Reyes-Quiroz: Instituto Literario No. 100, Universidad Autónoma del Estado de México

Indian Journal of Pure and Applied Mathematics, 2021, vol. 52, issue 4, 1072-1084

Abstract: Abstract Given a continuum X and a positive integer n, $$F_n (X)$$ F n ( X ) denotes the hyperspace of non-empty subsets of X with at most n elements, endowed with the Hausdorff metric. In this article, given X a simple m-od, we prove that $$F_{n-1} (X)$$ F n - 1 ( X ) is a $$(6n + 1)$$ ( 6 n + 1 ) - Lipschitz retract of $$F_n (X)$$ F n ( X ) for every $$n\ge 2$$ n ≥ 2 , and that $$F_{n-1} (X)$$ F n - 1 ( X ) is a 4- Lipschitz retract of $$F_n(X)$$ F n ( X ) for X a tree and $$n=2,3$$ n = 2 , 3 .

Keywords: Symmetric products; Retractions; Lipschitz maps; Trees and m-ods; 54B20; 54C15; 54E40 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00045-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:52:y:2021:i:4:d:10.1007_s13226-021-00045-4

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-021-00045-4

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:52:y:2021:i:4:d:10.1007_s13226-021-00045-4