Symmetries of modules of differential operators on the supercircle $$S^{1|n} $$ S 1 | n
J. Boujelben (),
I. Safi (),
Z. Saoudi () and
K. Tounsi ()
Additional contact information
J. Boujelben: Faculté des sciences de Sfax
I. Safi: I.P.E.I.S
Z. Saoudi: Faculté des sciences de Sfax
K. Tounsi: Faculté des sciences de Sfax
Indian Journal of Pure and Applied Mathematics, 2022, vol. 53, issue 3, 701-719
Abstract:
Abstract Let $$\mathfrak {F}_{\lambda }^n$$ F λ n be the space of tensor densities of degree $$\lambda \in \mathbb {C}$$ λ ∈ C on the supercircle $$S^{1|n}$$ S 1 | n . We consider the space $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ D λ , μ n , k of k-th order linear differential operators from $$\mathfrak {F}_{\lambda }^n$$ F λ n to $$\mathfrak {F}_{\mu }^n$$ F μ n as a module over the superalgebra $$\mathcal {K}(n)$$ K ( n ) of contact vector fields on $$S^{1|n}$$ S 1 | n and we compute the superalgebra of endomrphisms on $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ D λ , μ n , k commuting with the $$\mathfrak {aff}(n|1)$$ aff ( n | 1 ) -action where $$\mathfrak {aff}(n|1)$$ aff ( n | 1 ) is the affine subalgebra of $$\mathcal {K}(n)$$ K ( n ) . This result allows us to determine the superalgebra of endomrphisms on $$\mathfrak {D}_{\lambda ,\mu }^{n,k}$$ D λ , μ n , k commuting with the $$\mathfrak {osp}(n|2)$$ osp ( n | 2 ) -action for $$n\in \{1,2,3\}$$ n ∈ { 1 , 2 , 3 } where $$\mathfrak {osp}(n|2)$$ osp ( n | 2 ) is the orthosymlectic superalgebras of $$S^{1|n}$$ S 1 | n .
Keywords: Contact structure; Differential operators; Densities; 53D55 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00164-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:53:y:2022:i:3:d:10.1007_s13226-021-00164-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-021-00164-y
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().