Index partitioning through a bipartite graph model for faster similarity search in recommendation systems
Ali Cevahir ()
Additional contact information
Ali Cevahir: Rakuten Institute of Technology
Information Systems Frontiers, 2017, vol. 19, issue 5, No 14, 1176 pages
Abstract:
Abstract Scalability of a recommendation system is an important factor for large e-commerce sites containing millions of products visited by millions of users. Similarity search is the core operation in recommendation systems. In this paper, we explain a framework to alleviate performance bottleneck of similarity search for very large-scale recommendation systems. The framework employs inverted index for real-time similarity search and handles dynamic updates. As the inverted index gets larger, retrieving recommendations become computationally expensive. There are various works devoted to solve this problem, such as clustering and preprocessing to compute recommendations offline. Our solution is based on bipartite graph partitioning for minimizing the affinity between entities in different partitions. Number of operations in similarity search is reduced by executing search within the closest partitions to the query. Parts are balanced, so that computational loads of partitions are almost the same, which is significant for reducing the computational cost. Sequential experiments with several different recommendation approaches and large datasets consisting of millions of users and items validate the scalability of the proposed recommendation framework. Accuracy drops only by a small factor due to partitioning, if any. Even slight improvements in recommendation accuracy are observed in our collaborative filtering experiments.
Keywords: Recommendation systems; Content-based recommendations; Collaborative filtering; Inverted index; Bipartite graph; Graph partitioning (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10796-016-9646-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v:19:y:2017:i:5:d:10.1007_s10796-016-9646-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796
DOI: 10.1007/s10796-016-9646-x
Access Statistics for this article
Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao
More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().