RETRACTED ARTICLE: Research on personalized recommendation algorithm based on user preference in mobile e-commerce
Yuan Chen ()
Additional contact information
Yuan Chen: Chongqing College of Electronic Engineering
Information Systems and e-Business Management, 2020, vol. 18, issue 4, No 23, 837-850
Abstract:
Abstract With the development of Internet, the problem of information overload becomes more and more serious. The personalized recommendation technology can establish user files through the user’s behavior and other information, and automatically recommend the items that best match the user’s preferences, thus effectively reducing the information overload problem. Based on this, this paper studies the personalized recommendation algorithm based on user preferences in mobile e-commerce. In this paper, user preference model under UTA algorithm is constructed on the basis of user rating on multiple criteria of the project, and user preference clustering is used to improve the scalability problem of personalized recommendation. Finally, the simulation is conducted according to the proposed personalized recommendation algorithm based on user preference. The simulation data use the multi-criteria rating data from 6078 users of Yahoo! Movies website for 976 movies (including 62,156 rows of data). The experimental results show that the multi-criteria recommendation algorithm (MC-CF-dis), which uses user distance similarity, has the best effect, and the MAE and RMSE value of this algorithm is about 1.2 lower than that of the other three algorithms. Accuracy is 6–10% higher than other algorithms. Thus, using this personalized recommendation algorithm based on user preference can effectively improve the quality of recommendation.
Keywords: Mobile; E-commerce; Mixed recommendation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10257-019-00401-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infsem:v:18:y:2020:i:4:d:10.1007_s10257-019-00401-2
Ordering information: This journal article can be ordered from
http://www.springer. ... ystems/journal/10257
DOI: 10.1007/s10257-019-00401-2
Access Statistics for this article
Information Systems and e-Business Management is currently edited by Jörg Becker and Michael J. Shaw
More articles in Information Systems and e-Business Management from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().