The m-Machine Flow Shop
Hamilton Emmons () and
George Vairaktarakis ()
Additional contact information
Hamilton Emmons: Case Western Reserve University
George Vairaktarakis: Case Western Reserve University
Chapter Chapter 4 in Flow Shop Scheduling, 2013, pp 97-160 from Springer
Abstract:
Abstract Considered to be a very general case of flow shop systems, the m-machine flow shop is the most researched system in all of flow shop theory. Beyond solving the problem under a variety of objectives and side constraints, the m-machine flow shop serves as a test bed for new methodological tools. Regarding solutions, the research presented in this chapter is rich in lower bounding schemes, dominance properties, heuristic algorithms and computational experiments measuring their success. The models considered not only deal with all the standard regular performance measures, but also application-specific objective functions. A lot of work is also available on problems with multiple objectives. We find that the most successful solutions on problems of practical size are due to metaheuristic implementations including simulated annealing, tabu search and genetic algorithms. In contrast, branch-and-bound algorithms are mostly inadequate.
Keywords: Schedule Problem; Completion Time; Flow Shop; Total Tardiness; Partial Schedule (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4614-5152-5_4
Ordering information: This item can be ordered from
http://www.springer.com/9781461451525
DOI: 10.1007/978-1-4614-5152-5_4
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().