Maxmin Versus Minmax
Alan Washburn
Additional contact information
Alan Washburn: Naval Postgraduate School
Chapter Chapter 2 in Two-Person Zero-Sum Games, 2014, pp 5-13 from Springer
Abstract:
Abstract In this chapter we will consider games where one player or the other is compelled to make the first move, with the other player having the privilege of examining it before making his own choice. A game is usually represented as a rectangular matrix of payoffs (utilities) to player 1. The rows and columns will be referred to as “strategies”. In any play of the game, the payoff is at the intersection of the row chosen by player 1 and the column chosen by player 2. Player 1 makes his choice in the hope of making the payoff as large as possible, so he will be referred to as the maximizer. Since the game is zero-sum, player 2 has the opposite motivation, and will therefore be referred to as the minimizer. There is no need to develop an explicit notation for player 2’s payoff, but there is a need to remember the convention that “payoff” invariably means “payoff to player 1”. The matrix format is the game’s “normal” form.
Keywords: Price Scheme; Column Generation; Payoff Matrix; Matrix Game; Maxmin Problem (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-1-4614-9050-0_2
Ordering information: This item can be ordered from
http://www.springer.com/9781461490500
DOI: 10.1007/978-1-4614-9050-0_2
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().