Coupling Robust Optimization and Model-Checking Techniques for Robust Scheduling in the Context of Industry 4.0
Pascale Marangé (),
David Lemoine (),
Alexis Aubry,
Sara Himmiche,
Sylvie Norre (),
Christelle Bloch () and
Jean-François Pétin
Additional contact information
Pascale Marangé: Université de Lorraine, CRAN, CNRS 7039
David Lemoine: IMT Atlantique, LS2N UMR CNRS 6004
Alexis Aubry: Université de Lorraine, CRAN, CNRS 7039
Sara Himmiche: Université de Lorraine, CRAN, CNRS 7039
Sylvie Norre: Université Clermont Auvergne, LIMOS UMR CNRS 6158
Christelle Bloch: Université Bourgogne Franche-Comt., FEMTO-ST Institute, CNRS 6174
Jean-François Pétin: Université de Lorraine, CRAN, CNRS 7039
Chapter Chapter 6 in Scheduling in Industry 4.0 and Cloud Manufacturing, 2020, pp 103-124 from Springer
Abstract:
Abstract This chapter presents a generic methodology when considering robustness in production systems of Industry 4.0. It is the first milestone for coupling Operations Research models for robust optimization and Discrete Event Systems models and tools for property checking. The idea is to iteratively call Operations Research and Discrete Event Systems Models for converging towards a solution with the required robustness level defined by the decision-maker.
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-43177-8_6
Ordering information: This item can be ordered from
http://www.springer.com/9783030431778
DOI: 10.1007/978-3-030-43177-8_6
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().