EconPapers    
Economics at your fingertips  
 

The Measurement of Firms’ Efficiency Using Parametric Techniques

Luis Orea

Chapter Chapter 6 in Data Science and Productivity Analytics, 2020, pp 161-199 from Springer

Abstract: Abstract In this chapter we summarize the main features of the standard econometric approach to measuring firms’ inefficiency. We provide guidance on the options that are available using the Stochastic Frontier Analysis (SFA), the most popular parametric frontier technique. We start this chapter summarizing the main results of production theory using the concept of distance function. Next, we outline the most popular estimation methods: maximum likelihood, method-of-moments and distribution-free approaches. In the last section we discuss more advance topics and extend the previous models. For instance, we examine how to control for observed environmental variables or endogeneity issues. We also outline several empirical strategies to control for unobserved heterogeneity in panel data settings or using latent class and spatial stochastic frontier models. The last topics examined are dynamic efficiency measurement, production risk and uncertainty, and the decomposition of Malmquist productivity indices.

Date: 2020
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-43384-0_6

Ordering information: This item can be ordered from
http://www.springer.com/9783030433840

DOI: 10.1007/978-3-030-43384-0_6

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-030-43384-0_6