EconPapers    
Economics at your fingertips  
 

Three-Point Lifetime Distribution Elicitation for Maintenance Optimization in a Bayesian Context

J. René Dorp () and Thomas A. Mazzuchi ()
Additional contact information
J. René Dorp: The George Washington University
Thomas A. Mazzuchi: The George Washington University

Chapter Chapter 6 in Expert Judgement in Risk and Decision Analysis, 2021, pp 147-177 from Springer

Abstract: Abstract A general three-point elicitation model is proposed for eliciting distributions from experts. Specifically, lower and upper quantile estimates and a most likely estimate in between these quantile estimates are to be elicited, which uniquely determine a member in a flexible family of distributions that is consistent with these estimates. Multiple expert elicited lifetime distributions in this manner are next used to arrive at the prior parameters of a Dirichlet Process (DP) describing uncertainty in a lifetime distribution. That lifetime distribution is needed in a preventive maintenance context to establish an optimal maintenance interval or a range thereof. In practical settings with an effective preventive maintenance policy, the statistical estimation of such a lifetime distribution is complicated due to a lack of failure time data despite a potential abundance of right-censored data, i.e., survival data up to the time the component was preventively maintained. Since the Bayesian paradigm is well suited to deal with scarcity of data, the formulated prior DP above is updated using all available failure time and right-censored maintenance data in a Bayesian fashion. Multiple posterior lifetime distribution estimates can be obtained from this DP update, including, e.g., its posterior expectation and median. A plausible range for the optimal time-based maintenance interval can be established graphically by plotting the long-term average cost per unit time of a block replacement model for multiple posterior lifetime distribution estimates as a function of the preventive maintenance frequency. An illustrative example is utilized throughout the paper to exemplify the proposed approach.

Keywords: Expert judgment; Generalized two-sided power distribution; Dirichlet process; Bayesian inference (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-030-46474-5_6

Ordering information: This item can be ordered from
http://www.springer.com/9783030464745

DOI: 10.1007/978-3-030-46474-5_6

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-030-46474-5_6