Multiple Regression
Daniel P. McGibney
Additional contact information
Daniel P. McGibney: University of Miami
Chapter Chapter 5 in Applied Linear Regression for Business Analytics with R, 2023, pp 91-113 from Springer
Abstract:
Abstract In this chapter, we build upon the coverage of regression analysis by considering situations involving two or more predictor variables. For instance, while the weight of a person may be predicted using their height, we could use both the height and age of that person to predict their weight. Using more than one predictor variable to predict a response is called multiple regression analysis, which enables us to consider more predictor variables and thus obtain better estimates than those possible with simple linear regression.
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-031-21480-6_5
Ordering information: This item can be ordered from
http://www.springer.com/9783031214806
DOI: 10.1007/978-3-031-21480-6_5
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().