EconPapers    
Economics at your fingertips  
 

Re-Assessing Human Mortality Risks Attributed to Agricultural Air Pollution: Insights from Causal Artificial Intelligence

Louis Anthony Cox
Additional contact information
Louis Anthony Cox: Cox Associates and University of Colorado

Chapter Chapter 10 in AI-ML for Decision and Risk Analysis, 2023, pp 319-350 from Springer

Abstract: Abstract How can and should epidemiologists and risk assessors assemble and present evidence for causation of mortality or morbidities by identified agents such as fine particulate matter or other air pollutants? As a motivating example, some scientists have warned recently that ammonia from the production of meat significantly increases human mortality rates in exposed populations by increasing the ambient concentration of fine particulate matter (PM2.5) in air. We reexamine the support for such conclusions, including quantitative calculations that attribute deaths to PM2.5 air pollution by applying associational results such as relative risks, odds ratios, or slope coefficients from regression models to predict the effects on mortality or morbidity of reducing PM2.5 exposures. Taking an outside perspective from the field of causal artificial intelligence (CAI), we conclude that these attribution calculations are methodologically unsound. They produce unreliable conclusions because they ignore an essential distinction between differences in outcomes observed at different levels of exposure and changes in outcomes caused by changing exposure. We find that multiple studies that have examined associations between changes over time in particulate exposure and mortality risk instead of differences in exposures and corresponding mortality risks have found no clear evidence that observed changes in exposure help to predict or explain subsequent changes in mortality risks. We conclude that there is no sound theoretical or empirical reason to believe that reducing ammonia emissions from farms has reduced or would reduce human mortality risks. More generally, applying CAI principles and methods can potentially improve current widespread practices of unsound causal inferences and policy-relevant causal claims that are made without the benefit of formal causal analysis in air pollution health effects research and in other areas of applied epidemiology and public health risk assessment.

Keywords: Agricultural ammonia; Causal modeling; Causality; Exposure-response modeling; Mortality risk; PM2.5; Weight-of-evidence (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-031-32013-2_10

Ordering information: This item can be ordered from
http://www.springer.com/9783031320132

DOI: 10.1007/978-3-031-32013-2_10

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-031-32013-2_10