EconPapers    
Economics at your fingertips  
 

Scenario Optimization Methods in Portfolio Analysis and Design

Giuseppe Carlo Calafiore ()
Additional contact information
Giuseppe Carlo Calafiore: Politecnico di Torino

Chapter Chapter 3 in Optimal Financial Decision Making under Uncertainty, 2017, pp 55-87 from Springer

Abstract: Abstract This chapter discusses techniques for analysis and optimization of portfolio statistics, based on direct use of samples of random data. For a given and fixed portfolio of financial assets, a classical approach for evaluating, say, the value-at-risk (V@R) of the portfolio is a model-based one, whereby one first assumes some stochastic model for the component returns (e.g., Normal), then estimates the parameters of this model from data, and finally computes the portfolio V@R. Such a process hinges upon critical assumptions (e.g., the elicited return distribution), and leaves unclear the effects of model estimation errors on the computed quantity of interest. Here, we propose an alternative direct route that bypasses the assumption and estimation of a model for the returns, and provides the estimated quantity of interest (together with its out-of-sample reliability tag) directly from data generated by a scenario generation oracle. This idea is then extended to the situation where one simultaneously optimizes over the portfolio composition, in order to achieve an optimal portfolio with a guaranteed level of expected shortfall probability. Such a scenario-based portfolio design approach is here developed for both single-period and multi-period allocation problems. The methodology underpinning the proposed computational method is that of random convex programming (RCP). Besides the described data-driven problems, we show in this chapter that the RCP paradigm can also be employed alongside more standard mean-variance portfolio optimization settings, in the presence of ambiguity in the statistical model of the returns, providing a viable technique to address robust portfolio optimization problems.

Keywords: Data-driven portfolio optimization; Scenario methods; Random convex programs; Empirical quantiles; Multi-period asset allocation (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-319-41613-7_3

Ordering information: This item can be ordered from
http://www.springer.com/9783319416137

DOI: 10.1007/978-3-319-41613-7_3

Access Statistics for this chapter

More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:isochp:978-3-319-41613-7_3