Machine Learning (Supervised)
Shailesh Kumar ()
Additional contact information
Shailesh Kumar: Reliance Jio
Chapter Chapter 16 in Essentials of Business Analytics, 2019, pp 507-568 from Springer
Abstract:
Abstract Every time we search the Web, buy a product online, swipe a credit card, or even check our e-mail, we are using a sophisticated machine learning system, built on a massive cloud platform, driving billions of decisions every day. Machine learning has many paradigms. In this chapter, we explore the philosophical, theoretical, and practical aspects of one of the most common machine learning paradigms—supervised learning—that essentially learns a mapping from an observation (e.g., symptoms and test results of a patient) to a prediction (e.g., disease or medical condition), which in turn is used to make decisions (e.g., prescription). This chapter explores the process, science, and art of building supervised learning models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:isochp:978-3-319-68837-4_16
Ordering information: This item can be ordered from
http://www.springer.com/9783319688374
DOI: 10.1007/978-3-319-68837-4_16
Access Statistics for this chapter
More chapters in International Series in Operations Research & Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().