EconPapers    
Economics at your fingertips  
 

Popular matchings: structure and algorithms

Eric McDermid () and Robert W. Irving ()
Additional contact information
Eric McDermid: University of Glasgow
Robert W. Irving: University of Glasgow

Journal of Combinatorial Optimization, 2011, vol. 22, issue 3, No 4, 339-358

Abstract: Abstract An instance of the popular matching problem (POP-M) consists of a set of applicants and a set of posts. Each applicant has a preference list that strictly ranks a subset of the posts. A matching M of applicants to posts is popular if there is no other matching M′ such that more applicants prefer M′ to M than prefer M to M′. Abraham et al. (SIAM J. Comput. 37:1030–1045, 2007) described a linear time algorithm to determine whether a popular matching exists for a given instance of POP-M, and if so to find a largest such matching. A number of variants and extensions of POP-M have recently been studied. This paper provides a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a structure called the switching graph, a directed graph computable in linear time from the preference lists. We show that the switching graph can be exploited to yield efficient algorithms for a range of associated problems, including the counting and enumeration of the set of popular matchings, generation of a popular matching uniformly at random, finding all applicant-post pairs that can occur in a popular matching, and computing popular matchings that satisfy various additional optimality criteria. Our algorithms for computing such optimal popular matchings improve those described in a recent paper by Kavitha and Nasre (Proceedings of MATCH-UP: Matching Under Preferences—Algorithms and Complexity, 2008).

Keywords: Matchings; Bipartite graphs; One-sided preference lists (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-009-9287-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:22:y:2011:i:3:d:10.1007_s10878-009-9287-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-009-9287-9

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:22:y:2011:i:3:d:10.1007_s10878-009-9287-9