EconPapers    
Economics at your fingertips  
 

Separating NE from some nonuniform nondeterministic complexity classes

Bin Fu (), Angsheng Li () and Liyu Zhang ()
Additional contact information
Bin Fu: University of Texas-Pan American
Angsheng Li: Chinese Academy of Sciences
Liyu Zhang: University of Texas at Brownsville

Journal of Combinatorial Optimization, 2011, vol. 22, issue 3, No 13, 482-493

Abstract: Abstract We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) $\mathrm{NE}\not\subseteq R^{\mathrm{NP}}_{n^{o(1)}-T}(\mathrm{TALLY})$ ; (2) $\mathrm{NE}\not\subseteq R^{SN}_{m}(\mathrm{SPARSE})$ ; (3) $\mathrm{NEXP}\not\subseteq \mathrm{P}^{\mathrm{NP}}_{n^{k}-T}/n^{k}$ for all k≥1; and (4) $\mathrm{NE}\not\subseteq \mathrm{P}_{btt}(\mathrm{NP}\oplus\mathrm{SPARSE})$ . Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE-hard set is from an NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there exists another NP subset A′ of H such that A′⊇ A and A′−A is not of sub-exponential density.

Keywords: NE; NEXP; Nonuniform complexity class; Separation; Complexity (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-010-9327-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:22:y:2011:i:3:d:10.1007_s10878-010-9327-5

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-010-9327-5

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:22:y:2011:i:3:d:10.1007_s10878-010-9327-5