EconPapers    
Economics at your fingertips  
 

Roman domination on strongly chordal graphs

Chun-Hung Liu () and Gerard J. Chang ()
Additional contact information
Chun-Hung Liu: National Taiwan University
Gerard J. Chang: National Taiwan University

Journal of Combinatorial Optimization, 2013, vol. 26, issue 3, No 16, 608-619

Abstract: Abstract Given real numbers b≥a>0, an (a,b)-Roman dominating function of a graph G=(V,E) is a function f:V→{0,a,b} such that every vertex v with f(v)=0 has a neighbor u with f(u)=b. An independent/connected/total (a,b)-Roman dominating function is an (a,b)-Roman dominating function f such that {v∈V:f(v)≠0} induces a subgraph without edges/that is connected/without isolated vertices. For a weight function $w{:} V\to\Bbb{R}$ , the weight of f is w(f)=∑ v∈V w(v)f(v). The weighted (a,b)-Roman domination number $\gamma^{(a,b)}_{R}(G,w)$ is the minimum weight of an (a,b)-Roman dominating function of G. Similarly, we can define the weighted independent (a,b)-Roman domination number $\gamma^{(a,b)}_{Ri}(G,w)$ . In this paper, we first prove that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/independent (a,b)-Roman domination problems are NP-complete for bipartite graphs. We also show that for any fixed (a,b) the (a,b)-Roman domination and the total/connected/weighted independent (a,b)-Roman domination problems are NP-complete for chordal graphs. We then give linear-time algorithms for the weighted (a,b)-Roman domination problem with b≥a>0, and the weighted independent (a,b)-Roman domination problem with 2a≥b≥a>0 on strongly chordal graphs with a strong elimination ordering provided.

Keywords: Domination; Roman domination; Bipartite graphs; Chordal graphs; Split graphs; Strongly chordal graphs (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9482-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:3:d:10.1007_s10878-012-9482-y

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-012-9482-y

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:26:y:2013:i:3:d:10.1007_s10878-012-9482-y