Multiple L(j,1)-labeling of the triangular lattice
Pu Zhang and
Wensong Lin ()
Additional contact information
Pu Zhang: Southeast University
Wensong Lin: Southeast University
Journal of Combinatorial Optimization, 2014, vol. 27, issue 4, No 6, 695-710
Abstract:
Abstract Let n,j,k be nonnegative integers. An n-fold L(j,k)-labeling of a graph G is an assignment f of sets of nonnegative integers of order n to the vertices of G such that, for any two vertices u,v and any two integers a∈f(u), b∈f(v), |a−b|≥j if uv∈E(G), and |a−b|≥k if u and v are distance two apart. The span of f is the absolute difference between the maximum and minimum integers used by f. The n-fold L(j,k)-labeling number of G is the minimum span over all n-fold L(j,k)-labelings of G. Let n,j,k and m be nonnegative integers. An n-fold circular m-L(j,k)-labeling of a graph G is an assignment f of subsets of {0,1,…,m−1} of order n to the vertices of G such that, for any two vertices u,v and any two integers a∈f(u), b∈f(v), min{|a−b|,m−|a−b|}≥j if uv∈E(G), and min{|a−b|,m−|a−b|}≥k if u and v are distance two apart. The minimum m such that G has an n-fold circular m-L(j,k)-labeling is called the n-fold circular L(j,k)-labeling number of G. This paper provides upper and lower bounds for the n-fold L(j,1)-labeling number and the n-fold circular L(j,1)-labeling number of the triangular lattice and determines the n-fold L(2,1)-labeling number and n-fold circular L(2,1)-labeling number of the triangular lattice for n≥3.
Keywords: L(j; k)-labeling number; Circular L(j; k)-labeling number; n-Fold L(j; k)-labeling number; n-Fold circular L(j; k)-labeling number; Triangular lattice (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9549-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:27:y:2014:i:4:d:10.1007_s10878-012-9549-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9549-9
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().