Generating QAP instances with known optimum solution and additively decomposable cost function
Mădălina M. Drugan ()
Additional contact information
Mădălina M. Drugan: Vrije Universiteit Brussel
Journal of Combinatorial Optimization, 2015, vol. 30, issue 4, No 21, 1138-1172
Abstract:
Abstract Quadratic assignment problems (QAPs) is a NP-hard combinatorial optimization problem. QAPs are often used to compare the performance of meta-heuristics. In this paper, we propose a QAP problem instance generator that can be used for benchmarking for heuristic algorithms. Our QAP generator combines small size QAPs with known optimum solution into a larger size QAP instance. We call these instances composite QAPs (cQAPs), and we show that the cost function of cQAPs is additively decomposable. We give mild conditions for which a cQAP instance has known optimum solution. We generate cQAP instances using uniform distributions with different bounds for the component QAPs and for the rest of the cQAP elements. Numerical and analytical techniques that measure the difficulty of the cQAP instances in comparison with other QAPs from the literature are introduced. These methods point out that some cQAP instances are difficult for local search with many local optimum of various values, low epistasis and non-trivial asymptotic behaviour.
Keywords: Combinatorial optimization; Meta-heuristics; Quadratic assignment problem; Instance generator; Additively decomposable functions; Landscape analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-013-9689-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:30:y:2015:i:4:d:10.1007_s10878-013-9689-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-013-9689-6
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().