EconPapers    
Economics at your fingertips  
 

Discrete parallel machine makespan ScheLoc problem

Corinna Heßler () and Kaouthar Deghdak ()
Additional contact information
Corinna Heßler: TU Kaiserslautern
Kaouthar Deghdak: Normandie Univ

Journal of Combinatorial Optimization, 2017, vol. 34, issue 4, No 11, 1159-1186

Abstract: Abstract Scheduling–Location (ScheLoc) problems integrate the separate fields of scheduling and location problems. In ScheLoc problems the objective is to find locations for the machines and a schedule for each machine subject to some production and location constraints such that some scheduling objective is minimized. In this paper we consider the discrete parallel machine makespan ScheLoc problem where the set of possible machine locations is discrete and a set of n jobs has to be taken to the machines and processed such that the makespan is minimized. Since the separate location and scheduling problem are both $$\mathcal {NP}$$ NP -hard, so is the corresponding ScheLoc problem. Therefore, we propose an integer programming formulation and different versions of clustering heuristics, where jobs are split into clusters and each cluster is assigned to one of the possible machine locations. Since the IP formulation can only be solved for small scale instances we propose several lower bounds to measure the quality of the clustering heuristics. Extensive computational tests show the efficiency of the heuristics.

Keywords: ScheLoc; Discrete location; Integrated problems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0138-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:34:y:2017:i:4:d:10.1007_s10878-017-0138-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-017-0138-9

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:34:y:2017:i:4:d:10.1007_s10878-017-0138-9