Analyses on the 2 and 3-Flip Neighborhoods for the MAX SAT
M. Yagiura () and
T. Ibaraki ()
Additional contact information
M. Yagiura: Kyoto University
T. Ibaraki: Kyoto University
Journal of Combinatorial Optimization, 1999, vol. 3, issue 1, No 8, 95-114
Abstract:
Abstract For problems SAT and MAX SAT, local search algorithms are widely acknowledged as one of the most effective approaches. Most of the local search algorithms are based on the 1-flip neighborhood, which is the set of solutions obtainable by flipping the truth assignment of one variable. In this paper, we consider r-flip neighborhoods for r ≥ 2, and propose, for r = 2, 3, new implementations that reduce the number of candidates in the neighborhood without sacrificing the solution quality. For 2-flip (resp., 3-flip) neighborhood, we show that its expected size is O(n + m) (resp., O(m + t2n)), which is usually much smaller than the original size O(n2) (resp., O(n3)), where n is the number of variables, m is the number of clauses and t is the maximum number of appearances of one variable. Computational results tell that these estimates by the expectation well represent the real performance.
Keywords: MAX SAT; SAT; local search; neighborhood (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/A:1009873324187 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:3:y:1999:i:1:d:10.1023_a:1009873324187
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1023/A:1009873324187
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().