On Approximate Graph Colouring and MAX-k-CUT Algorithms Based on the θ-Function
E. de Klerk (),
D.V. Pasechnik and
J.P. Warners
Additional contact information
E. de Klerk: University of Waterloo
D.V. Pasechnik: J.W. Goethe-Universität
J.P. Warners: KPN Research, P.O. Box
Journal of Combinatorial Optimization, 2004, vol. 8, issue 3, No 3, 267-294
Abstract:
Abstract The problem of colouring a k-colourable graph is well-known to be NP-complete, for k ≥ 3. The MAX-k-CUT approach to approximate k-colouring is to assign k colours to all of the vertices in polynomial time such that the fraction of `defect edges' (with endpoints of the same colour) is provably small. The best known approximation was obtained by Frieze and Jerrum (1997), using a semidefinite programming (SDP) relaxation which is related to the Lovász θ-function. In a related work, Karger et al. (1998) devised approximation algorithms for colouring k-colourable graphs exactly in polynomial time with as few colours as possible. They also used an SDP relaxation related to the θ-function. In this paper we further explore semidefinite programming relaxations where graph colouring is viewed as a satisfiability problem, as considered in De Klerk et al. (2000). We first show that the approximation to the chromatic number suggested in De Klerk et al. (2000) is bounded from above by the Lovász θ-function. The underlying semidefinite programming relaxation in De Klerk et al. (2000) involves a lifting of the approximation space, which in turn suggests a provably good MAX-k-CUT algorithm. We show that of our algorithm is closely related to that of Frieze and Jerrum; thus we can sharpen their approximation guarantees for MAX-k-CUT for small fixed values of k. For example, if k = 3 we can improve their bound from 0.832718 to 0.836008, and for k = 4 from 0.850301 to 0.857487. We also give a new asymptotic analysis of the Frieze-Jerrum rounding scheme, that provides a unifying proof of the main results of both Frieze and Jerrum (1997) and Karger et al. (1998) for k ≫ 0.
Keywords: graph colouring; approximation algorithms; satisfiability; semidefiniteprogramming; Lovász θ-function; MAX-k-CUT (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/B:JOCO.0000038911.67280.3f Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:8:y:2004:i:3:d:10.1023_b:joco.0000038911.67280.3f
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1023/B:JOCO.0000038911.67280.3f
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().