EconPapers    
Economics at your fingertips  
 

Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting

Jake Lever and Rossella Arcucci ()
Additional contact information
Jake Lever: Imperial College London
Rossella Arcucci: Imperial College London

Journal of Computational Social Science, 2022, vol. 5, issue 2, No 12, 1427-1465

Abstract: Abstract The intensity of wildfires and wildfire season length is increasing due to climate change, causing a greater threat to the local population. Much of this population are increasingly adopting social media, and sites like Twitter are increasingly being used as a real-time human-sensor network during natural disasters; detecting, tracking and documenting events. The human-sensor concept is currently largely omitted by wildfire models, representing a potential loss of information. By including Twitter data as a source in our models, we aim to help disaster managers make more informed, socially driven decisions, by detecting and monitoring online social media sentiment over the course of a wildfire event. This paper implements machine learning in a wildfire prediction model, using social media and geophysical data sources with Sentiment Analysis to predict wildfire characteristics with high accuracy. We also use wildfire-specific attributes to predict online social dynamics, as this has been shown to be indicative of localised disaster severity. This may be useful for disaster management teams in identifying areas of immediate danger. We combine geophysical satellite data from the Global Fire Atlas with social data provided by Twitter. We perform data collection and subsequent analysis & visualisation, and compare regional differences in online social sentiment expression. Following this, we compare and contrast different machine learning models for predicting wildfire attributes. We demonstrate social media is a predictor of wildfire activity, and present models which accurately model wildfire attributes. This work develops the concept of the human sensor in the context of wildfires, using users’ Tweets as noisy subjective sentimental accounts of current localised conditions. This work contributes to the development of more socially conscious wildfire models, by incorporating social media data into wildfire prediction and modelling.

Keywords: Machine learning; Social media; Wildfires; Sentiment analysis; Twitter data; Satellite data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-022-00174-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:5:y:2022:i:2:d:10.1007_s42001-022-00174-8

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-022-00174-8

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:5:y:2022:i:2:d:10.1007_s42001-022-00174-8