Propositional claim detection: a task and dataset for the classification of claims to truth
Sami Nenno ()
Additional contact information
Sami Nenno: University of Bremen
Journal of Computational Social Science, 2024, vol. 7, issue 2, No 22, 1727-1752
Abstract:
Abstract This paper introduces Propositional Claim Detection (PCD), an NLP task for classifying claims to truth, and presents a publicly available dataset for it. PCD is applicable in practical scenarios, for instance, for the support of fact-checkers, as well as in many areas of communication research. By leveraging insights from philosophy and linguistics, PCD is a more systematic and transparent version of claim detection than previous approaches. This paper presents the theoretical background for PCD and discusses its advantages over alternative approaches to claim detection. Extensive experiments on models trained on the dataset are conducted and result in an $$\hbox {F}_{1}$$ F 1 -score of up to 0.91. Moreover, PCD’s generalization across domains is tested. Models trained on the dataset show stable performance for text from previously unseen domains such as different topical domains or writing styles. PCD is a basic task that finds application in various fields and can be integrated with many other computational tools.
Keywords: Misinformation; NLP; Claim detection; Truth-values (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42001-024-00289-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:7:y:2024:i:2:d:10.1007_s42001-024-00289-0
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-024-00289-0
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().