EconPapers    
Economics at your fingertips  
 

Flood of techniques and drought of theories: emotion mining in disasters

Soheil Shapouri (), Saber Soleymani and Saed Rezayi
Additional contact information
Soheil Shapouri: Lehigh University
Saber Soleymani: University of Georgia
Saed Rezayi: University of Georgia

Journal of Computational Social Science, 2025, vol. 8, issue 1, No 5, 14 pages

Abstract: Abstract Emotion mining has become a crucial tool for understanding human emotions during disasters, leveraging the extensive data generated on social media platforms. This paper aims to summarize existing research on emotion mining within disaster contexts, highlighting both significant discoveries and persistent issues. On the one hand, emotion mining techniques have achieved acceptable accuracy enabling applications such as rapid damage assessment and mental health surveillance. On the other hand, with many studies adopting data-driven approaches, several methodological issues remain. These include arbitrary emotion classification, ignoring biases inherent in data collection from social media, such as the overrepresentation of individuals from higher socioeconomic status on Twitter, and the lack of application of theoretical frameworks like cross-cultural comparisons. These problems can be summarized as a notable lack of theory-driven research and ignoring insights from social and behavioral sciences. This paper underscores the need for interdisciplinary collaboration between computer scientists and social scientists to develop more robust and theoretically grounded approaches in emotion mining. By addressing these gaps, we aim to enhance the effectiveness and reliability of emotion mining methodologies, ultimately contributing to improved disaster preparedness, response, and recovery.

Keywords: Emotion mining; Sentiment analysis; Natural disasters; Emotion; Technological disasters (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-024-00330-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00330-2

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-024-00330-2

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00330-2